746 research outputs found

    Self-Stabilizing TDMA Algorithms for Dynamic Wireless Ad-hoc Networks

    Get PDF
    In dynamic wireless ad-hoc networks (DynWANs), autonomous computing devices set up a network for the communication needs of the moment. These networks require the implementation of a medium access control (MAC) layer. We consider MAC protocols for DynWANs that need to be autonomous and robust as well as have high bandwidth utilization, high predictability degree of bandwidth allocation, and low communication delay in the presence of frequent topological changes to the communication network. Recent studies have shown that existing implementations cannot guarantee the necessary satisfaction of these timing requirements. We propose a self-stabilizing MAC algorithm for DynWANs that guarantees a short convergence period, and by that, it can facilitate the satisfaction of severe timing requirements, such as the above. Besides the contribution in the algorithmic front of research, we expect that our proposal can enable quicker adoption by practitioners and faster deployment of DynWANs that are subject changes in the network topology

    Structure-Aware Classification using Supervised Dictionary Learning

    Full text link
    In this paper, we propose a supervised dictionary learning algorithm that aims to preserve the local geometry in both dimensions of the data. A graph-based regularization explicitly takes into account the local manifold structure of the data points. A second graph regularization gives similar treatment to the feature domain and helps in learning a more robust dictionary. Both graphs can be constructed from the training data or learned and adapted along the dictionary learning process. The combination of these two terms promotes the discriminative power of the learned sparse representations and leads to improved classification accuracy. The proposed method was evaluated on several different datasets, representing both single-label and multi-label classification problems, and demonstrated better performance compared with other dictionary based approaches

    Sparsity Based Poisson Denoising with Dictionary Learning

    Full text link
    The problem of Poisson denoising appears in various imaging applications, such as low-light photography, medical imaging and microscopy. In cases of high SNR, several transformations exist so as to convert the Poisson noise into an additive i.i.d. Gaussian noise, for which many effective algorithms are available. However, in a low SNR regime, these transformations are significantly less accurate, and a strategy that relies directly on the true noise statistics is required. A recent work by Salmon et al. took this route, proposing a patch-based exponential image representation model based on GMM (Gaussian mixture model), leading to state-of-the-art results. In this paper, we propose to harness sparse-representation modeling to the image patches, adopting the same exponential idea. Our scheme uses a greedy pursuit with boot-strapping based stopping condition and dictionary learning within the denoising process. The reconstruction performance of the proposed scheme is competitive with leading methods in high SNR, and achieving state-of-the-art results in cases of low SNR.Comment: 13 pages, 9 figure
    corecore